
An Overview of Stochastic Gradient Descent in Machine Learning ∗

Mason del Rosario
University of California, Davis

mdelrosa@ucdavis.edu

June 11, 2019

Abstract

With the proliferation of available data in recent decades, online approaches to optimization need to be
designed with computational complexity in mind. For deep learning applications, optimization algorithms
must strike a balance between minimizing noise, accounting for non-convexity, and dealing with ill-
conditioning while keeping the compute time tractable. Stochastic gradient descent and extensions
thereof have proven effective in addressing these issues, and modern deep learning libraries, such as
Tensorflow and Keras, come with built-in optimizers based on stochastic gradient descent. This study
presents the foundations for stochastic gradient descent, describes variations, such as minibatch and
quasi-Newton methods, which have the potential to deal with issues of computational complexity and non-
convexity, and describes optimizers, including Nesterov accelerated gradient (NAG) and Adam, popular
in the machine learning community. Finally, additional avenues of research into SGD are discussed.

Keywords: Stochastic gradient descent, machine learning, optimizers

∗This paper was written to fulfill the term paper requirement for the Fall 2019 offering of the graduate course, EEC263
Optimal and Adaptive Filtering, taught by Professor Bernard Levy.

1

Contents

1 Introduction 3

2 Optimization Problems 3

3 Stochastic Gradient and Batch Gradient 4
3.1 Trade-offs . 4

4 Extensions/Variations 5
4.1 Noise-reduction methods . 6

4.1.1 Dynamic sampling . 6
4.1.2 Gradient aggregation . 6
4.1.3 Iterate averaging . 7

4.2 Second-order methods . 7
4.2.1 Newton’s method . 7
4.2.2 Inexact Newton methods . 7
4.2.3 Quasi-Newton methods . 8
4.2.4 Gauss-Newton methods . 8
4.2.5 Diagonal scaling methods . 9

5 Optimizers 9
5.1 Momentum . 9
5.2 Acceleration . 10
5.3 Adaptive optimizers . 10

5.3.1 Adagrad . 11
5.3.2 Adadelta/RMSProp . 11
5.3.3 Adam . 12

5.4 Comparison of Optimizers . 12

6 Frontiers 13
6.1 Distributed gradient descent . 13
6.2 Batch normalization . 13
6.3 Shuffling/curriculum learning . 14

2

1 Introduction

Stochastic gradient descent is a method of numerical optimization which has found popularity in the fields
of machine learning and neural networks [2]. Section 2 of this paper provides a framework for numerical
optimization problems. Section 3 formulates stochastic and batch gradient descent and summarizes the
trade-offs between them. Section 4 describes extensions to and variations on SGD which deal with noise,
ill-conditioning, and non-convexity. Section 5 highlights popular optimizers for SGD methods which are
frequently used in neural networks and deep learning. Section 6 concludes the paper and discusses open
challenges and areas of investigation regarding SGD.

2 Optimization Problems

The goal in optimization is to minimize the loss incurred by a given parameterized system model. Generally
speaking, a gradient algorithm seeks to find the optimum parameters for the model. The algorithm may begin
with an initial parameterization, and updates to the parameters are made in the ‘direction’ that reduces the
loss. The direction of descent is taken in the opposite direction of the loss function’s gradient with respect
to the parameters. If steps of proper magnitude are taken and if the function is convex, then the method
will arrive at the loss function’s global minimum, which correpsonds to an optimal parametrization.

Before introducing gradient methods formally, we consider the general form of an arbitrary loss function based
on Bottou’s notation [1]. To formulate numerical optimization problems, the key ingredients include:

• Prediction Function: The prediction function maps system inputs and function parameters to pos-
sible outputs. This function can be thought of as a system model which we seek to optimize such that
we can produce accurate system outputs for arbitrary inputs. The set of prediction functions, H, is
written as

H := {h(·;w) : w ∈ Rd} (1)

where h(·;w) : Rdx × Rd → R (assuming a non-variational prediction function).

• Loss Function: The loss function measures the discrepancy between system observations and the
output of the prediction function. A general form for such a loss function is

` (h(·;w), y) : Rdy × Rdy → R (2)

such that the loss function compares a single prediction, h(·;w), to a single true output, y, and yields
a scalar value in R.

• Risk Function: The risk function denotes the loss incurred across all possible input and output
combinations for a given parameterization. Analytically, this is equivalent to integrating `(·, ·) over
Rdx × Rdy ,

R(w) =

∫
Rdx×Rdy

` (h(x;w), y) dP (x, y) (3)

– Expected Risk: Assuming a closed-form, differentiable expression of h(·;w) is avaiable, then (3)
evaluates to the expectation of the loss,

R(w) = E [` (h(x;w), y)] dP (x, y) (4)

– Empirical Risk: In practice, the prediction function does not admit a readily differentiable
closed-form solution, and the expectation cannot be taken. Instead, it is possible to evaluate the
loss based on a finite number of samples, {(xi, yi)}n=1

i ⊆ Rdx × Rdy .

Rn(w) =
1

n

n∑
i=1

` (h(xn;w), yn) (5)

3

(5) is the object of interest in practical optimization problems. For compactness, a composite function
for the i-th realiztaion of the ` and h, fi(w) := f(w; ξ[i]) = ` (h(xn;w), yn), for a sequence of random
input-output realizations, ξ[i] := (xi, yi), can be used to rewrite (5) as follows:

Rn(w) =
1

n

n∑
i=1

fi(w) (6)

3 Stochastic Gradient and Batch Gradient

With the optimization problem defined as the minimization of Rn(w), we move on to a particular family
of optimization methods. The canonical stochastic approach is known as the stochastic gradient method
(SGD), with the form

wk+1 = wk − αk∇fik(wk), (7)

where the parameters, wi, are updated by a single realization of the random process, {ξ[i]} = {(xik , yik)},
leading to a non-deterministic parameterization. By extension, {wk} is a random process determined by the
index {ik}. Individual realizations of the negative term, −∇fik(wk), may not yield negative updates to wk
(i.e., they may not individually minimize Rn), but given a sufficient number of samples, SGD will minimize
Rn in expectation.

While SGD is a stochastic method which updates wk based on individual samples, batch methods use the
average value of several individual gradients due to multiple realizations of ξ[i]. For example, the steepest
descent algorithm is written as

wk+1 = wk −
αk
n

n∑
i=1

∇fik(wk). (8)

3.1 Trade-offs

Stochastic and batch optimization methods can be contrasted by their convergence rates. In the machine
learning literature, the type of convergence which batch optimization exhibits is called linear convergence,
which means that at sufficiently high values of k, the training error is bounded by

En = Rn(wk)−R∗n ≤ O(ρk) (9)

with constant ρ ∈ (0, 1). R∗n is the empirical risk under optimal wk, meaning En is the error in risk. In
comparison, the error-bound in stochastic optimization is sub-linear, which is described by

En = Rn(wk)−R∗n ≤ O
(

1

k

)
. (10)

Thus batch optimization schemes might appear to assume lower error at convergence than stochastic schemes.
However, consider the big data case (which is often encountered in the context of deep learning) where an

4

Batch Stochastic

T (n, ε) n log
(
1
ε

)
1
ε

E∗ log(Tmax)+1
Tmax

1
Tmax

Table 1: Summary of compute time and minimized asymptotic error based on given compute time-limit, T ,
batch size n, and error bound ε.

effectively infinite number of observations are available and a time constraint, Tmax, is placed on the iterative
algorithm. Under the assumption of strong convexity, the compute times, τ , and minimal optimization/es-
timation error, E∗, are summarized in Table 1.

We note that for batch methods, T becomes varies linearly with n such that in the case of infinite data,
batch methods will take infinitely long. In contrast, stochastic methods merely depend on the acceptable
error-bound, ε.

Thus stochastic gradient descent serves as a starting point for methods which can perform model optimization
in a computationally tractable manner for deep learning, and the following sections discuss how we can alter
classic SGD to account for its inherent limitations.

4 Extensions/Variations

Roughly speaking, there are two axes along which extensions to SGD can be categorized, noise-reduction
methods and second-order methods (see Figure 1).

Figure 1: Illustration of stochastic gradient descent and the axes along which its variants can be categorized.
Methods which incorporate more gradient samples per iteration are known as noise reduction methods while
methods which use the Hessian or estimates of the Hessian are known as second-order methods.

5

4.1 Noise-reduction methods

As SGD involves random observations, ξ[i], noise is inherent in the parameter update iterations. This noise
can prolong the time to convergence. Thus the goal of noise-reduction methods is to reduce the variance
in either the gradient estimates or in the parameter iterates themselves. At least three categories of noise-
reduction methods exist, including dynamic sampling, gradient aggregation, and iterate averaging.

4.1.1 Dynamic sampling

Dynamic sampling involves changing the number of random samples, ξi, to incorporate in the parameter
update. First, we introduce the notion of the mini-batch gradient, which rather than evaluating the
gradient at individual realizations of ξ[i], takes an average contribution from a subsect of all observations,
Si.

wk+1 = wk −
αk
|Sk|

∑
i∈Sk

∇fi(wk). (11)

The size of the minibatch can be adjusted at different values of k to achieve gradient estimates with progres-
sively lower variance. For example, one realization of dynamic sampling with fixed step size, ᾱ, is written
as

wk+1 = wk − ᾱg(wk, ξk) (12)

g(wk, ξk) :=
1

nk

∑
i∈Sk

∇f(wk; ξk,i) (13)

where nk := |Sk| = dτk−1e for τ > 1. Thus, the cardinality of sampled observations, Sk, increases per-
iteration. Minibatch methods have been shown to exhibit linear convergence, and while they are not widely
used in ML applications, they could serve to combine the low computational complexity of stochastic gradient
at low k while limiting the variance at high k [1].

4.1.2 Gradient aggregation

Gradient aggregation methods incorporate gradient estimates from previous iterations and update those
estimates upon re-sampling. Variants of gradient aggregation include:

• SVRG: Stochastic variance reduced gradient method operates in between the iterates, wk, by iteratively
updating an intermediate unbiased parameter estimate, w̃k.

w̃j+1 = w̃j − αg̃j (14)

g̃j = ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk)) (15)

where the batch gradient is defined as∇Rn = 1
n

∑n
i=1∇fi(wk) and ij ∈ {1, . . . , n} is a random variable.

After completion of the inner loop for w̃j , the SG parameter wk can be updated in one of three ways:

1. Set wk+1 = w̃n+1

2. Set wk+1 = 1
n

∑n
j=1 w̃j+1

3. Choose j uniformly from {1, . . . , n}, set wk+1 = w̃j+1

As SVRG requires computation of the batch gradient at each iteration its outer SGD loop, its com-
putational complexity is greater than that of vanilla SGD. In practice, SGD exhibits faster initial
convergence than SVRG, but SVRG can achieve higher training accuracy.

6

• SAGA: The stochastic average gradient algorithm is written as

wk+1 = wk − αgk (16)

gk = ∇fj(wk)−∇fj(w[j]) +
1

n

n∑
i=1

∇fi(w[i]) (17)

where i ∈ {1, . . . , n}, j ∈ {1, . . . , n} and w[i] represents the latest iterate at which ∇fi was evalu-
ated. The algorithm is initialized by computing and storing the sampled gradient values, ∇fi(w[i])←
∇fi(w1), and they are updated at each iteration of k. Thus, the computational complexity of the
batch gradient is high at initialization but relatively cheap during subsequent iterations as it requires
n additions and a single multiplication.

In short, gradient aggregation methods are able to integrate previous gradient information to iteratively
update an estimate of the batch gradient, and such methods can achieve better convergence time than SGD
alone. However, the applicability of gradient aggregation in large-scale machine learning is still not certain,
as its compute time scales linearly with the sample size, n.

4.1.3 Iterate averaging

Another method of noise reduction involves taking the average of parameter iterates

wk+1 = wk − αkg(wk, ξk) (18)

w̃k+1 =
1

k + 1

k+1∑
j=1

wj , (19)

The performance of iteratve averaging is tightly linked to the selection of step sizes, αk. Combined with a
diminishing step size sequence, iterate averaging has been shown to possess asymptotic excess MSE of O(1

k)
for step sizes larger than a pure SGD method [1].

4.2 Second-order methods

Second-order methods, such as Newton methods, quasi-Newton methods, and Gauss-Newton methods, have
the potential to deal with ill-conditioning and non-linearities in the objective function.

4.2.1 Newton’s method

The based on full-gradient update,

wk+1 = wk − αkB2∇F (wk) (20)

with B = (∇2F (wk))−1/2. This equates to a regularization by the Hessian at each iteration of the algo-
rithm.

Due to matrix factorization, exact calculation of the Hessian is computationally expensive, so inexact methods
which can leverage previously calculated values of F (wk) and ∇F (wk) are appealing. This is the premise
behind conjugate-gradient (CG) methods and motivates the Newton-CG method.

4.2.2 Inexact Newton methods

The same stochastic treatment the gradient can be applied to the Hessian. As before, we can define a
set of realizations of the random variable SHk := {ξH[i]} = {(xik , yik)} where the samples Sk and SHk are
conditionally uncorrelated. This sub-sampling allows for the stochastic Hessian

∇2F (wk; ξHk) =
αk
|SHk |

∑
i∈SH

k

∇2F (wk; ξHk,i) (21)

7

In selecting |SHk |, the sample size should be large enough to provide adequate information about the local
curvature of F (wk) while keeping the sample size small enough to reduce computational cost.

Fortunately, the iterations of SGD are less sensitive to noise from the Hessian they are to noise arising from
the gradient, meaning that |SHk | ≤ |Sk| is a typical heuristic for sample size.

For practical machine learning applications, subsampling for Hessian approximation is sensible when |Sk| is
sufficiently large such that a small |SHk | does not introduce an undue computational burden. If a stochastic
gradient is used, then a sample size of |SHk | > |Sk| may be necessary, negating the computational savings of
the stochastic gradient altogether.

4.2.3 Quasi-Newton methods

Rather than explicitly calculating the Hessian at each iteration, one can approximate the Hessian based on
samples of the gradient. The most prevalant Quasi-Newton method is called BFGS, named after its authors
Broyden-Fletcher-Goldfarb-Shanno, which takes the form

wk+1 = wk − αkHk∇F (wk) (22)

Where Hk is an approximation of (∇2F (wk))−1 computed iteratively based on samples of the gradient. The
Hessian approximation is based on the parameter update and gradient differences

sk+1 = wk+1 − wk (23)

vk+1 = ∇F (wk+1)−∇F (wk) (24)

yielding the update rule

Hk+1 =

(
I − vks

T
k

sTk vk

)
Hk

(
I − vks

T
k

sTk vk

)
+
sks

T
k

sTk vk
. (25)

A stochastic variant, called limited-memory BFGS (L-BFGS), is written as

wk+1 = wk − αkHk∇g(wk, ξk) (26)

which depends on the random variable ξk.

4.2.4 Gauss-Newton methods

Rather than using the subsampled Hessian (21) in the parameter update, a Jacobian-based approximation
can be used

GSH
k

(wk; ξHk) =
αk
|SHk |

∑
i∈SH

k

Jh(wk; ξHk,i)H`(wk; ξHk,i)Jh(wk; ξHk,i) (27)

where Jh(·; ξ) is the Jacobian of h(xξ; ·) w.r.t. w and where H` = ∂2`
∂h2 (h(xξ, wk), yξ). (27) is known as the

generalized Gauss-Newton method, which is resembles the classical Gauss-Newton method, which solves the
least-squares loss function, `(h(xξ, w), yξ) = 1

2 ||h(xξ, w)− yξ||22, yielding H` = I.

8

4.2.5 Diagonal scaling methods

In the case of quasi-Newton methods, the scaling matrix, Hk, is potentially a dense matrix of size Rd ×Rd,
the size of which can outweigh the benefits of curvature information. To counteract this, methods which
incorporate diagonal or block diagonal scaling matrices have been developed.

A running estimate of the diagonal entries of (27) can be used to perform the parameter iterations. This
estimate is written as

[Gk]i = (1− λ) [Gk−1]i − λ [Jh(wk; ξk)Jh(wk; ξk)]ii (28)

[wk+1]i = [wk]i −
(

α

[Gk]i + µ

)
[g(wk, ξk)]i (29)

where [·]i denots the ith element of a vector. µ is a smoothing term which prevents division by zero at
initialization, λ is an exponential decay term, and g(wk, ξk) is the stochastic gradient at iteration k. Whereas
the methods until now have used Hessian or Hessian aprroximations of size n × n, Gk is a vector of size
n, which affords diagonal scaling methods substantial computational savins when the parameter space is
large.

5 Optimizers

Practitioners of deep learning have access to libraries which allow for fast implementation of neural networks.
In the notation developed in Section 2, a neural network takes inputs, x, and produces predictions, h(w, ξk),
which are meant to approximate desired outputs, y. Thus, the optimization of a neural network is amenable
to stochastic gradient descent and the variations described in Section 4.

In this section, we define and characterize the variants of SGD which are commonly implemented in popular
deep learning libraries [5].

5.1 Momentum

A momentum term with βk may be added to (7), yielding

wk+1 = wk − αk∇F (wk) + βk(wk − wk−1). (30)

With sequences {αk} and {βk} and initial condition w0 := w1. For αk = α and βk = β (i.e., constant step
size and momentum coefficients), (30) is known as the heavy ball method. The heavy ball method can be
viewed as a sum of exponentially decaying previous samples of the gradient.

wk+1 = wk − α
i∑

j=1

βk−j∇F (wj) (31)

Thus, the heavy ball method tends to favor directions which have occurred multiple times in past realizations
while discounting directions which occur infrequently. Figure 2 demonstrates how such momentum-based
methods have the ability to overcome ill-conditioned prediction functions. In the context of deep neural
networks (DNN), stochastic methods incorporating momentum have shown experimental promise given well-
chosen parameter initialization [3].

9

Figure 2: Illustration of the effect of momentum on SGD for a function with a poorly conditioned Hessian [9].
The black lines indicate the direction of steepest descent while the red lines indicate SGD with momentum.
Momentum helps damp the oscillations which steepest descent would induce in the parameter iterates and
increases the rate of converge.

5.2 Acceleration

Similar to the momentum formulation, another variant of (7) incorporating previous descent directions can
be written as

w̃k+1 = wk + βk(wk − wk−1) (32)

wk+1 = w̃k − αk∇F (w̃k+1) + βk(wk − wk−1) (33)

= wk − αk∇F (wk + βk(wk − wk−1)) + βk(wk − wk−1) (34)

Where the gradient samples are taken after following the parameter momentum, w̃k, rather than at wk.
This Nesterov accelerated gradient (NAG) method is known to have O

(
1
k2

)
convergence rate, which has been

empirically shown to exhibit faster convergencce than previously developed gradient methods [4]. Figure 3
provides a geometric description of the difference between a simple momentum update and a Nesterov-
supplemented momentum update.

5.3 Adaptive optimizers

While previously described algorithms have updated learning rates uniformly across all parameters, the
following methods incorporate parameter-wise adaptation of learning rates. The motivating intuition here
is that depending on the update history, more emphasis should be placed on certain parameters over others.
Discussion and formulation of these adaptive methods was adopted from [5].

10

Figure 3: Illustration of difference between momentum and Nesterov accerated gradient (NAG) parameter
update [6]. In the momentum update, the gradient is taken at the previous parameter value (red dot) while
in NAG, the gradient is evaluated after following the momentum step.

5.3.1 Adagrad

Reminiscent of the normalized least-mean squares (NLMS) algorithm, Adagrad is diagonal scaling quasi-
Newton variant of SGD with an adaptive learning rate.

wk+1 = wk −
α√
Gt + ε

∇F (wk) (35)

Gt = diag

 k∑
j=1

(∇wi
F (wk))2

 (36)

Where Gt is a diagonal matrix with elements corresponding to the sum of the squares of past gradients and ε
is a smoothing term which prevents division by zero at initialization. Inspecting (35), we see that parameters
wk,i which have a large influence on the gradient a given time t will have their future influence decay. From
a machine learning practitioner’s perspective, Adagrad eliminates the need to choose a particular learning
since the rate is effectively controlled by Gt.

5.3.2 Adadelta/RMSProp

As the elements of Gt monotonically increase, the effective learning rate of Adagrad will always tend towards
0. To correct for this, Adadelta uses a decaying average of past squared gradients instead of the full sum of
squared gradients, Gt.

wk+1 = wk −
√

E [∆wk−1] + ε√
E [g]k + ε

gk (37)

= wk −
RMS [∆wk−1]

RMS [gk]
gk (38)

Where the RMS error terms in the numerator and denominator track the average of previous squared
parameter updates and of previous squared gradients, respectively.

E
[
∆w2

]
k

= γE
[
∆w2

]
k−1 + (1− γ)∆w2

k (39)

E
[
g2
]
k

= γE
[
g2
]
k−1 + (1− γ)g2t (40)

(38) does not depend on a step size coefficient, α. Similar to Adagrad, RMSprop adapts its step size
by a decaying average of previous squared gradients without accounting for previous squared parameter

11

updates.

wk+1 = wk −
α√

E [g]k + ε
gk (41)

E
[
g2
]
k+1

= γE
[
g2
]
k

+ (1− γ)g2k (42)

Where the author of RMSprop suggests decay rate of γ = 0.9 [7].

5.3.3 Adam

Adaptive moment estimation (Adam) was suggested by Kingma and Lei Ba in order to combine attractive
features of Adagrad and RMSprop [8]. The zero-biased estimates of the first- and second-order moments
(i.e., mean and variance) of the gradient are written as

mk = β1mk−1 + (1− β1)gk (43)

vk = β2vk−1 + (1− β2)g2k. (44)

With exponential decay rates β1, β2. As m0 and v0 are initialized as zero-vectors, mk and vk are zero-biased.
Bias-corrected versions of these moments are written as

m̂k =
mk

1− βk1
(45)

v̂k =
vk

1− βk2
. (46)

With the bias-corrected moments, the update rule for Adam can be written as

wk+1 = wk −
α√
v̂k + ε

m̂k (47)

Thus, parameter selection involves step size α as well as decay rates β1, β2. Good default values have
been listed as α = 0.002, β1 = 0.9, and β2 = 0.999 [5]. Adam has generally proven robust to variation
of these parameters with the caveat that learning rate, α, sometimes needs to be adjusted for the given
application [9].

5.4 Comparison of Optimizers

Figure 4 compares the performance of non-adaptive optimizers (SGD, Momentum, NAG) to adaptive op-
timizers (Adagrad, Adadelta, RMSProp). SGD’s salient shortcoming is convergence time, which both Mo-
mentum and NAG improve. However, both Momentum and NAG begin heading in the wrong direction and
must wait until their momentum and acceleration terms accumulate until they course-correct. In contrast,
the adaptive methods do a much better job of traversing the loss function, quickly finding a convergent
trajectory.

The particular graphic in Figure 4 does not list the respective learning/decay rates, α and β. While this
forces us to take the non-adaptive results with a grain of salt, the adaptive algorithms’ performance only
depend on these parameters near initialization.

Which optimizer should one use is largely dependent on the appliciation. If the designer cares about mini-
mizing time to convergence, then one of the adaptive methods is ideal. Recent papers using deep learning in
wireless communications have simply opted to use Adam with parameter values close to the previously de-
scribed defaults [13]. However, consensus as to which algorithm enjoys the best performance overall remains
elusive [9].

12

Figure 4: Last frame of an animation showcasing the parameter trajectories of the above optimizers [5]. The
adaptive algorithms take more direct paths to the local minimum than the non-adaptive methods.

6 Frontiers

Stochastic gradient descent and extensions thereof are the predominant method of parameter optimization
in neural networks. The mini-batch and second-order variations discussed in the last two sections have
bolstered SGD’s ability to deal with noise reduction, ill-conditioning, and non-convexity, all of which are
salient challenges in the optimization of deep neural networks.

Beyond the methods discussed, several active areas of research have the potential to further bolster the
applicability of SGD in the context of deep learning. A brief survey of these research areas follows.

6.1 Distributed gradient descent

Given the size of the datasets on which SGD operates, parallelized algorithms which calculate multiple
gradients for multiple iterations concurrently are highly appealing for their potential to reduce compute
time. Such parallel algorithms may serve to make SGD amenable to execution on GPUs or on multiple
CPUs. Multiple efforts to implement distributed algorithms with shared memory [10], asynchronous worker
nodes [11], and delay-tolerant capabilities [12].

6.2 Batch normalization

In the methods discussed, we have allowed the first- and second-order statistics of parameters to evolve
such they may lose normalization (i.e., non-zero mean, non-unit variance). This might cause bias or ill-
conditioning in our parameterized model, and it would be useful to renormalize parameters on a scheduled
basis.

To address this, batch normalization serves to renormalize parameters, allows the designer to use a higher
learning rate and achieve faster convergence. Batch normalization has shown a greater than 10-fold decrease
in steps while achieving the same accuracy as comparable image classification networks [15].

13

6.3 Shuffling/curriculum learning

Consideration must be given to the order in which we present training examples to our algorithm. If we wish
to prevent our neural network from learning a particular function, then we may shuffle the training data on
subsequent iterations to prevent bias.

In contrast, we may want to incrementally ‘increase’ the ‘difficulty’ of training examples which we present
to our neural network. In this case, a curriculum of training examples can be constructed. Such a sequence
of training data has the potential to improve convergence and performance of a network [14].

References

[1] L. Bottou, “Optimization methods for large-scale machine learning,” SIAM Review, vol. 60, pp. 223-311,
2018.

[2] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction 2018.

[3] L. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum
in deep learning, in 30th International Converence on Machine Learning (ICML), 2013.

[4] Y. Nesterov, A method of solving a convex programming problem with convergence rate O
(

1
k2

)
, Soviet

Math. Dokl., 27 (1983)

[5] S. Ruder, An overview of gradient descent optimization algorithms, arXiv:1609.04747v2 [cs.LG], (2017).

[6] A. Karpathy, Convolutional Neural Networks for Visual Recognition, Course notes, Accessed 2019 June
9.

[7] G. Hinton, Lecture 6a: Overview of mini-batch gradient descent, Coursera lecture, “Neural networks for
machine learning,” Accessed 2019 June 9.

[8] D. P. Kingma, J. L. Ba, Adam: A method for stochastic optimization. International Conference on
Learning Representations, 1-13. (2015).

[9] I. Goodfellow, Y. Bengio, A. Courville, Optimization for Training Deep Models, from Deep Learning,
MIT Press, (2016).

[10] F. Niu, B. Recht, R. Christopher, S. J. Wright, Hogwild! : A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent, 1–22. (2011).

[11] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, A. Y. Ng, Large Scale Distributed
Deep Networks. NIPS 2012: Neural Information Processing Systems, 1–11. (2012).

[12] H. B. Mcmahan, M. Streeter, Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning.
Advances in Neural Information Processing Systems (Proceedings of NIPS), 1–9. (2014).

[13] T. J. O’Shea, T. Roy, N. West, Approximating the void: Learning stochastic channel models from
observation with variational generative adversarial networks. arXiv:1805.06350v2, (2018).

[14] W. Zaremba, I. Sutskever, Learning to Execute, arXiv:1410.4615v3 [cs.NE] (2014).

[15] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal co-
variate shift. arXiv:1502.03167v3 [cs.LG] (2015).

14

