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For my term project, I reviewed “Maximum Mutual In-
formation Design for MIMO Systems With Imperfect Chan-
nel Knowledge” [1]. In the paper, the authors seek to find
an expression for the optimal transmit covariance matrix,
Q, for a capacity lower bound given channel mean and
channel correlation information at both the transmitter and
the receiver. This progress report provides summaries of the
major sections of the paper and a summary of my efforts in
replicating numerical results.

1. INTRODUCTION

Multiple Input Multiple Output (MIMO) systems consti-
tute a promising technology for future wireless communica-
tions networks, as they are known to increase the achievable
capacity of communications networks [2]. However, determi-
nation of the MIMO channel’s capacity is dependent on the
availability of accurate Channel State Information (CSI) at
the transmitter and at the receiver.

A. Background

1) Perfect CSI: To develop an intuition for the importance
of CSI, consider a canonical MIMO channel,

y = Hx+ n

with additive Gaussian noise, n, and complex fading channel
coefficients, H. Perfect CSI is equivalent to exact knowledge
of H. If the receiver can determine H by utilizing pilot signals,
then it can send this information back to the transmitter. The
transmitter may then use H to precode its transmissions, which
would result in a received symbol vector

y = H−1Hx+ n = x+ n

In this case, the determination of x at the receiver is trivial,
as it involves filtering of Gaussian noise.

2) Imperfect CSI: Reality is often disappointing, and un-
fortunately, CSI is no exception. The receiver does not have
a priori knowledge of the channel, and the resulting feedback
to the transmitter is an estimate, Ĥ, which we call Imperfect
CSI. This yields a received symbol of the form

y = Ĥ−1Hx+ n.

Clearly, errors in estimation may have adverse effects on the
recovery of x from y. An illustration of the dataflow in a
MIMO system can be seen in Figure 1.

This paper was written to fulfill the term paper requirement for the UC
Davis graduate course, EEC266 Information Theory and Coding.

Fig. 1: Illustration of a MIMO system with imperfect feedback.

3) CSI and MIMO Capacity: As discussed in lecture, the
Shannon capacity of a fading MIMO channel with additive
Gaussian noise is found by way of an eigendecomposition of
HHT . Assuming an appreciably large transmit power, P , the
MIMO capacity can be written as
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Tr(Qii)
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where Q is the transmit covariance matrix, λii is the i-th
eigenvalue of HHT , t is the rank of HHT (i.e., number
of λii), and k and ` are the number of transmit and receive
antennas, respectively.

However, this analysis depends on perfect CSI, and the
achievable capacity of a MIMO channel under imperfect CSI
requires consideration of Ĥ. This brings us to the question
which [1] attempts to answer: What is the effect of Imperfect
CSI on the achievable capacity of the MIMO channel?

B. Prior Work

The authors note the following papers as prior work making
the following contributions:
• Perfect CSI at transmitter and receiver [3]–[5].
• Perfect CSI at receiver (CSIR) and channel

mean/covariance information at transmitter (CSIT)
[6].
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• Noncoherent case with no instantaneous CSIT or CSIR
[7], [8]

• Perfect coherent system (perfect CSIR) [9].
• Noncoherent system (no instantaneous CSIR) [9].
• Channel estimation for CSIR with estimation errors/CSIT

assumed to be identical to CSIR and fed back to trans-
mitter with no loss [10].

• CSIR and CSIT independently estimated via channel
mean and channel correlation [11], [15].

C. Main Contributions

The authors claim the following contributions:
• Formalization of globally optimum transmit covariance

matrix for capacity lower bound.
• Determination of relationship between maximum mu-

tual information design and minimum mean-square error
(MSE) design with imperfect CSI.

• Derive different results than [11] w.r.t. effect of different
amounts of transmit/receive correlation.

2. PRELIMINARIES

A. Notation

The notation from [1] used in this report includes:
• Upper (lower) case bold letters represent matrices (vec-

tors).
• E [·] is the expectation, tr(·) is the matrix trace.
• |A| is the determinant of A, |a| is the magnitude of a
• (·)∗ and (·)H represent the complex conjugate and Her-

mitian, respectively
• Ia is the a× a identity
• Nc(·, ·) is the circularly symmetric complex Gaussian

distribution
• A � 0 means that A is positive semidefinite

B. System Model

A single-user MIMO system is described by nT transmitter
antennas and nR receiver transmitters. The channel is modeled
as H, and received signal is y = Hx+n where x is the nt×1
original coded message and n ∼ Nc(0, σ

2
nInR

) is an nR × 1
Gaussian noise vector. The input covariance matrix is written
as Q = E

[
xxH

]
. The channel model H = R

1
2

RHwR
1
2

T is from
[12] with normalized (i.e., 1’s along their diagonals) receive
and transmit correlation matrices RR and RT and with all
entries of Hw, hw,ij ∼ N (0, 1).

The imperfect CSIR model is adapted from [11] as follows,

H = Ĥ+E, Ĥ = R
1
2

RĤwR
1
2

T , Ê = R
1
2

RÊwR
1
2

T (2.1)

with CSIR estimate Ĥ of H and estimation error E. Ĥ and E
are zero-mean, uncorrelated with i.i.d. entries Nc(0, 1 − σ2

E)
and Nc(0, σ

2
E), respectively (i.e., σ2

E is the estimation error
variance). Here, the authors of [1] make two key assumptions
as per [11]:

1) Lossless feedback is assumed,
2) CSIR and CSIT are assumed to be identical.

While these assumptions limit the practicality of the results,
the consideration of estimated CSIR/CSIT is still more realistic
than the perfect CSIR/CSIT used in the prior work. With these
assumptions in hand, the full CSI, Ĥ, RR, RT , RT , σ2

E , and
σ2
n, are known at both the transmitter and the receiver. The

full channel output can be rewritten as y = Ĥx + Ex + n,
and the total noise can be written as ntotal = Ex + n with
covariance written as

Rntotal = σ2
E tr (RTQ)RR + σ2

nInR
(2.2)

Note that Rntotal is not strictly Gaussian, meaning an explicit
capacity expression is difficult to derive. Instead, lower and
upper bounds on the capacity have been proposed as per [10],
[11],

I low ≤ I
(
x;y|Ĥ

)
≤ Iup (2.3)

with

I low = log2 |InR
+ ĤQĤHR−1ntotal

| (2.4)
Iup = I low + log2 |Rntotal |

− E
[
log2 |σ2

E(x
HRTx

HRR) + σ2
nInR

|
]

(2.5)

where the expectation in the upper bound is taken w.r.t. p(x).
I low and Iup denote the lower and upper bounds on mutual
information, respectively.

3. PROBLEM FORMULATION

The capacity lower-bound is adopted as the design criterion
with the following optimization problem, [10], [15]

Ilow = max
Q�0,tr(Q)≤PT

log2 |InR
+ ĤQĤHR−1ntotal

| (3.1)

where the lower-bound on the ergodic capacity is the following
expectation taken w.r.t. the channel distribution,

Clow = E [Ilow] . (3.2)

4. METHODOLOGY

To find the optimal Q, the authors of [1] form an equivalent
problem to (3.1) by considering a precoder-decoder pair,
(F,G), where x = Fs for zero-mean, unit variance i.i.d. data
vector s with dimension rg×1. Observe that Q = E

[
xxH

]
=

FFH . The channel output can be rexpressed as

y = ĤFs+EFs+ n (4.1)

The received vector after the decoder is given as r = Gy.
Define the Mean-Square Error (MSE) matrix w.r.t. (F,G)

MSE(F,G)
def
= E

[
(r− s)(r− s)H

]
= GĤFFHĤHGH −GĤF− FHĤHGH + Irg

+GRntotalG
H (4.2)

where the expectation is taken w.r.t. the distributions of
s,n,Ew. The problem in (3.1) is equivalent to

min
F,G,tr(FFH)≤PT

ln |MSE(F,G)| (4.3)
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Fig. 2: Left: Justification for the capacity lower bound (CLB) as a design criterion for the transmit covariance matrix. All curves assume no
receive correlation (i.e., ρR = 0.0, RR = InR ). Right: Replication using the iterative algorithm.

As a constrained optimization problem, the Lagrangian with
inequality constraint can be written as

Lc(F,G, µ) = ln |MSE (F,G) |+ µg

[
tr
(
FFH

)
− PT

]
.

(4.4)

After some simplification of the Lagrangian with KKT condi-
tions, the relevant equations for the precoder/decoder are

G = FHĤH
[
ĤFFHĤH +Rntotal

]−1
(4.5)

µg =
σ2
n

PT
tr(GRntotalĤF) (4.6)

αg = tr
{
GRRRntotalĤF

}
(4.7)

F =
[
µgI+ αgσ

2
ERT

]−1
ĤHGH (4.8)

The authors show that a global optimum, (Fgopt ,Ggopt) exists
for (4.3) and that Qgopt is related by Qgopt = FgoptF

H
gopt

.
In general, when each of the correlation matrices, RR and

RT , are not strictly uncorrelated (i.e., RT 6= InT
and RR 6=

InR
), the authors write the expression for (Fgopt ,Ggopt) can be

found numerically with an iterative algorithm based on [13].
Table I outlines this algorithm.

1. Initialize F = F0 as diagonal matrix with tr(F0FH
0 ) = PT

2. Update Rntotal and G using (2.2) and (4.5), respectively.
3. Update µg and αg using (4.6) and (4.7), respectively.
4. Update F using (4.8); scale F s.t. tr(FFH) = PT .
5. If ||Fi − Fi−1||F ≤ ε, return Fi. Otherwise, return to Step 2.

TABLE I: Iterative algorithm for Lagrangian optimization of F,G.

In the special case where the received signals are uncor-
related (i.e., RR = InR

and RT 6= InT
), Qopt may be found

by way of a closed-form expression.

5. NUMERICAL RESULTS

The authors conduct three experiments summarized in the
following three figures:

1) Fig. 2 provides a justification for adopting the capacity
lower bound (CLB) as a design criterion for Q.

2) Fig. 3 shows the effect of increasing correlation on the
channel capacity.

3) Fig. 4 compares equal amounts of correlation at the
transmitter and the receiver on the channel capacity.

For the purposes of this project, I have replicated Fig. 2, 3,
and 4.

To define the spatial correlation of the antennas, the authors
use the exponential correlation models given in [14], [15] as

(RT )ij = ρ
|i−j|
T for i, j ∈ {1, . . . , nT } (5.1)

(RR)ij = ρ
|i−j|
R for i, j ∈ {1, . . . , nR} (5.2)

where nT = nR = 4 (i.e., 4 antennas are used at both the
transmitter and the receiver). The SNR is defined as PT /σ

2
n.

A. Comparison of Different Capacity Bounds

Fig. 2 shows the CLB in comparison to the capacity upper
bound (CUB). The authors show that in the case of no receive
correlation, these bounds are tight, meaning adoption of the
lower bound provides close-to-optimal capacity. Furthermore,
two more cases are plotted, including

1) Perfect: Assumes knowledge of Perfect CSI (σ2
E) and

utilizes the water-filling algorithm along with knowledge
of the channel’s eigenmodes.

2) Uniform: Allocates equal power to each antenna.
The Perfect case reflects the Shannonn capacity bound (1.1)
and serves as an upper bound for an ideal situation while the
Uniform case serves as the analogous lower bound.

B. Effect of Correlation on Capacity

Figures 3 and 4 show the effect of increasing correlation
at either the transmitter or the receiver. In Fig. 3, the authors
illustrate that increasing correlation at both ends of the channel
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Fig. 3: Left: Figure 3 from [1] showing the capacity lower-bound for σ2
E = 0.01 using the iterative algorithm (Table I. Increasing correlation

degrades the capacity of the channel. Right: Replication using the iterative algorithm.

Fig. 4: Left: Figure 4 from [1] showing the capacity lower-bound for σ2
E = 0.01 using the iterative algorithm (Table I. Equivalent amounts

of correlation at the transmitter/receiver result in equivalent channel capacity. Right: Replication using the iterative algorithm.

decreases the achievable capacity. In Fig. 4, the authors show
that equal amounts of correlation result in equal channel
capacity.

C. Replication

1) Performance: The replicated results do not perfectly
reflect the paper’s results, as the cases with high correlation
(ρT = 0.9 or ρR = 0.9) reach higher capacity values than the
cases with low correlation (ρT ≤ 0.5 or ρR ≤ 0.5) at high
SNRs (see RHS of Fig. 3 and 4). The crossover point where
high correlation capacity exceeds low correlation capacity
appears to be 25dB.

The key piece of this replication is the algorithm outlined in
Table I, and to generate results identical to [1], parameters for
the algorithm may need to be tweaked. Some potential causes
of this discrepancy are

• The convergence criterion, ε. The paper cites ε =
0.01 as a possible value but does not make explicit
what value is reflected in their figures. For this project,
ε ∈ {0.1, 0.01, 0.001} were adopted, but none of them
resulted in a significant change in behavior.

• Number of samples. The capacity it taken as the expec-
tated value of the MI lower and upper bounds, I low and
Iup. The number of samples used for the replication is
500, which was chosen to minimize the runtime of the
experiments, but it is possible that a larger number of
samples needs to be taken to accurately approximate the
expectation.

2) File Location: The codebase for generating the sys-
tem model described in Section 2.2 and the algorithm de-
scribed in Table I is in the following Github repository:
https://github.com/mdelrosa/eec266 project. This code is in
a Jupyter notebook, and for ease of portability, this can be

https://github.com/mdelrosa/eec266_project


5

viewed and run in an internet browser using the follow-
ing Google Colab: https://colab.research.google.com/github/
mdelrosa/eec266 project/blob/master/eec266 project.ipynb.

3) Runtime: On my local device (Dell XPS 13 9350
Signature edition, Windows 10) and on Google Colab, all
experiments took 14 minutes to complete.

4) Formatting Notes: If run on a device without
the proper matplotlib styles (see https://github.com/
garrettj403/SciencePlots), Fig. 2 through 4 will render with
default matplotlib settings. Thus, the content of the Fig-
ures will be identical while the formatting will be different.
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