
A CUDA-based Batcher-Banyan Network for
Bitonic Sort

Kourosh Vali, Mahyar Samani, and Mason del Rosario

Abstract—We describe the Batcher-Banyan (BB) network, a
sorting network which performs bitonic mergesort by alternating
between comparisons and routings. We discuss how to partition
the BB network such that memory transactions are coalesced, and
we specify how shared memory can encompass large sections of
the sorting network. We present a CUDA-based implementation
of the BB network, and compare its performance to readily
available CUDA-based sorting algorithms including bitonic sort
and radix sort.

Index Terms—Bitonic sort, sorting network, parallel comput-
ing, CUDA

I. BATCHER-BANYAN SORTING NETWORK

The Batcher-Banyan (BB) network [1] sorts an array of
N = 2n elements by alternating between 1) creating bitonic
sequences of length 2m (with Batcher networks) and 2)
merging bitonic sequences to generate sequences of length
2m+1 (with Banyan networks).

The BB network is comprised of two types of work: com-
parisons between adjacent elements and routings between
different addresses.

Fig. 1: Annotated BB network [2] showing different stages of
work to perform.

This project report was completed in accordance with the final project
requirements for the Winter 2020 offering of EEC289Q: Modern Parallel
Computing taught by Prof. John Owens and Kerry Seitz at the University
of California, Davis.

K. Vali, M. Samani, and M. del Rosario are with the Department of
Electrical and Computer Engineering, University of California at Davis, Davis,
CA 95616 USA (e-mail: [kvali,msamani,mdelrosa]@ucdavis.edu).

A. Comparisons

Comparators (i.e., the boxes in Fig. 1) operate on adjacent
elements in the array. Each comparator takes two elements at
its input and moves the larger element to the arrow’s tip and the
smaller element to its tail. Looking at a single column of the
network (Fig. 1), the i-th comparator looks at the elements at
2i and 2i+1. The level-th bit of comparator address
dictates the direction of the comparison. The discussion of how
level is determined is in Section I-C.

B. Routing Toplogies

Routings are done by the wires connecting comparators
(Fig. 1). The BB network uses two routing topologies:
shuffle and butterfly. Each topology routes 2n inputs
to 2n outputs (with n ≥ 2). Figure ?? shows the structure of
the routing topologies for n = 4 (i.e., 16 inputs/outputs).

Fig. 2: Two routing topologies used in BB network, shuffle
and butterfly, routing 16 elements.

How are the inputs addressed mapped to the output ad-
dresses for each of these routing topologies? Consider the
binary representation for the addresses. Denote the number of
elements to be routed as M and the i−th input (output) address
as ini(outi). The address manipulation for each routing is as
follows:



• shuffle: Circularly shift ini one bit to the right, store
in outi.

• butterfly:
– If ini < M/2 and mod(ini, 2) == 1, then switch the

first and last bit of ini and store in outi.
– If ini ≥M/2 and mod(ini, 2) == 0, then switch the

first and last bit of ini and store in outi.
– Else, outi = ini

C. Stage-Based Algorithm

Algorithm 1 shows pseudocode for the stage-based algo-
rithm for the BB network. Figure 1 highlights the stages
of the algorithm which the BB network follows [2]. level
determines how to set a given column of comparisons, and
substage determines the height of a given shuffle or
butterfly network.

Algorithm 1: Stage-based algorithm for Batcher-
Banyan sorting network.

Result: Sorted array of length N = 2n

Initialize stage = 0, level = 0, substage = 0;
Input x[N];
while While stage < n do

while substage ≤ stage do
size = pow(2, 2+stage−substage);
if stage < n− 1 then

if substage==0 then
comparators(x,size,level);
shuffle(x,size);
level++;

end
comparators(x,size,level);
butterfly(x,size);
substage++;

else
comparators(size,level);

end
substage = 0;
stage++;

end
end

II. CUDA IMPLEMENTATION

The BB network lends itself well to parallelization. Each
column of comparators in Fig. 1 only acts on two adjacent
locations in memory at any given time, meaning they can be
performed in parallel. Furthermore, each routing topology is
a bijection between the its input and its output, so any given
thread will write its output to an address without conflicting
with another thread.

The repository includes two implementations: a global
memory version and a shared memory version.

A. Global Memory BB Network

When using global memory for inter-block commu-
nication, three __global__ kernels are implemented:
compareAndSwap, shuffleN, and butterflyN. These
kernels are called from the CPU sequentially as per Algo-
rithm 1.

B. Shared Memory BB Network

Rather than calling __global__ kernels from the CPU,
the shared memory implementation defines the work kernels
as __device__ functions, and a __global__ kernel pop-
ulates shared memory with portions of the target array then
calls the __device__ functions.

Given particularly large arrays, shared memory might be
insufficient to store portions of the array. Consider Fig. 3,
which illustrates a case where our shared memory is only
capable of storing eight elements.

We dispatch two thread blocks (red and blue) on two halves
of the network. Once we reach the purple region, we see
that the routing crosses over the red-blue boundary, meaning
the addresses which the routing outputs are outside of each
block’s shared memory. At this point, the kernel needs to write
elements out to global memory and re-read those values back
into shared memory before continuing execution.

Fig. 3: Annotated BB network [2] showing hypothetical case
where shared memory available on an individual SM is smaller
than a portion of the array.

We dispatch thread blocks on “stage blocks” of the sorting
network. Virtually, we imagine that a stage block is equivalent
to at most one thread block. If the number of threads in a block
is larger than the stage block’s height, m stage blocks will be



(a) Time (b) throughput

Fig. 4: Time to sort (left) and memory throughput (right) of sorting algorithms for increasing number of floating point elements
(2n elements for n ∈ [4, 5, . . . , 26]). Batcher-Banyan using global memory (BB Global) and shared memory (BB Shared)
are the proposed sorting networks. Two GPU-based algorithms (bitonic sort and radix sort) and one CPU-based algorithm
(std::sort) are included as benchmarks. Values are averaged over ten trials for each data point.

emulated by one thread block where m = blockdim.x
stage block height . On

the other hand, if a thread block is smaller in size compared
to a stage block, then each thread block will stride inside a
specific stage block before the whole grid is moved over the
stage blocks to cover all of the blocks in a stage. In both cases
in order to keep track of the shared memory, each comparator
has global and local addresses. The global address is used to
index the global memory and the local address is used to index
the shared memory. This also guarantees that thread blocks are
properly divided into stage blocks dependent on each stage’s
block height.

III. RESULTS

To assess the performance of the BB network, we bench-
marked against two GPU-based algorithms, bitonic sort [3] and
radix sort [4], as well as a CPU-based algorithm (std::sort).
We generate arrays of randomly generated floats of length 2n

with n ∈ [10, 11, . . . , 25, 26], and we report the time to sort
(Fig. 4(a)) and the sorting throughput (Fig. 4(b)).

The algorithms are benchmarked on a single ”NVidia GTX
Titan Xp” which is based on Pascal architecture, with a total
of 30 Streaming Multiprocessors, and 49kB shared memory
per block and 12 GB global memory with a bandwidth of 547
GB/s. Each data point is calculated for 10 times and averaged
to reduce unpredictability. The input dataset are randomized
floating point numbers which could be positive or negative.
Also, another test on the ”Intel Xeon CPU E5-2603” with
the built in std::sort algorithm was benchmarked. The Sorting
algorithm on the CPU outperforms all GPU implementations
in short-sized arrays this is because of very good caching
abilities of the CPU on smaller datasizes.

Given the size of shared memory (49kB), we are restricted
to comparing and routing 12k floats (occupying 48kB) per

SM. For portions of the network that span more than 12k
floats, we utilize global memory. The shared memory imple-
mentation faced a problem while trying arrays larger than
213 elements and that’s why in the graph above, we are
depicting only a section of the possible results for the shared
memory implementation. Looking at the trail, we surpassed
the radix sort algorithm and obviously the global memory
implementation Also, we expect this trend to continue until
arrays with 215 elements where we need to rely more on the
global memory and performance will be similar to the global
memory implementation.

A. Repository

The code for the BB network and the benchmark sorting
algorithms is availble in the following Github repository.

IV. DISCUSSION

Complexity and Scalability Analysis. The number of
stages in the BB network is

nstages =

(
logN∑
i=1

i

)
∝ O

[
(logN)2

]
. (1)

this means that if we double the number of elements in the
dataset from N to 2N, the depth of the BB network will be
incremented by logN + 1.

Why use the BB network/sorting networks? For large
arrays (n ≥ 16), radix sort is consistently faster than the BB
network and bitonic sort. In what situations would BB network
be preferable?

• Small datasets Assuming the size of the arrays to be
sorted is small, the BB network has similar performance
to radix sort. This is confirmed from the Results that we
have obtained. As we can see, Bitonic Sort outperforms

https://github.com/mahyarsamani/Bitonic-Sort-Using-Batcher-Network


Radix Sort in less than 216 elements. This is due to the
fact that in the Bitonic Sort algorithm there are no more
accesses to the global memroy as the data is already
loaded in the shared memory of the deice. Whereas, in
the Radix Sort algorithm there are new arrays allocated
on the global memory for categorizing.

• More Predictable: The Bitonic Sort and Batcher-Banyan
Sort algorithms are more predictable than Radix Sort
algorithm in terms of timing. Despite the data in Fig. III
being averaged over 10 trials, the time and throughput of
Radix Sort do not change predictably as n increases.

• Dataset Agnostic: The sorting networks, Bitonic and
Batcher-Banyan included, are useful in the sense that the
routing in the network is predefined and won’t alter with
the change in the values. This predictability stems from
the fixed number of stages with a fixed routing pattern
of the sorting networks [5]. This in contrast to the Radix
sort algorithm where the sorting radices will not remain
the same with different data.

Bottlenecks and Improvements The biggest challenges in
our implementation is how we could map the comparison
operations to threads inside the blocks and how to utilize
shared memory within a block of threads. If we take a look
at the global Batcher-Banyan network implementation, we
are bottle-necked by the global memory bus speed. For the
global memory model, the routings and assigning jobs seem
to be working well, but we are not using memory efficiently.
Especially after 216 elements when we utilize the whole
threads and blocks, we observe that the throughput is almost
flat. This is the same for Bitonic Sort, but it plateaus at a
higher throughput.

Another challenge that we faced in implementing our algo-
rithm in the shared memory was the handling the data in the
shared memory block. If the data isn’t copied back to global
memory after each stage, some conflicts might happen will
processing the data in the next levels. In the future work, we
can implement the Batcher-Banyan algorithm on the shared
memory for all the elements with switching to global memory
when necessary.

The problem that we are trying to address is important in
the sense that the Batcher-Banyan network is a multistage
interconnect network comprised of smaller switching elements
and the fixed network topology helps in sorting elements
in a mid-sized array, and to the best of our knowledge the
Batcher-Banyan Network hasn’t been implemented on GPU.
One improvement to this implementation will be to breakdown
the larger dataset to batches of mid-sized arrays and pass them
to the Batcher-Banyan netowrk for sorting. Finally a merging
algorithm on CPU can join the batches together to yield the
final sorted dataset.

V. CONCLUSION

In this project, we demonstrated a Batcher-Banyan network
that sorts an array of N = 2n elements. We discussed how to
divide thread blocks between different regions of the network
such that they could operate on shared memory, and we noted

the limitations in using shared memory based on the ‘height’
of the routing topologies. We compared other methods on GPU
and one on CPU with two of our implementations, on using
global memory and one using shared memory. We learned that
it’s important to have a defined methodology of distributing
work between threads and blocks evenly as possible, and
handling the memory such that we face no conflicts. Also, we
found out that the compute power is abundant and it’s very
hard to utilize it, as we are usually bound to memory speeds.
Since using shared memory is comparable to caching, if the
GPU designers were to remove the L2 cache in the device and
add more shared memory to each SM, the programmer will
have more flexibility in using the shared memory.

REFERENCES

[1] M. J. Narasimha, “The batcher-banyan self-routing network: universality
and simplification,” IEEE Transactions on Communications, vol. 36,
no. 10, pp. 1175–1178, Oct 1988.

[2] M. Yang and G. Ma, “Enhanced partially self-routing algorithm for
controller benes networks,” United States Patent (#5,940,389), August
1999.

[3] “Cuda toolkit documentation - sortingnetworks - cuda sorting
networks,” https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-
sorting-networks, November 2019.

[4] N. Bell and J. Hoberock, GPU Computing Gems Jade Edition. Morgan
Kaufmann, 2011.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose
computation on graphics hardware,” Computer Graphics Forum,
vol. 26, no. 1, pp. 80–113, 2007. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01012.x

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01012.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01012.x

	Batcher-Banyan Sorting Network
	Comparisons
	Routing Toplogies
	Stage-Based Algorithm

	CUDA Implementation
	Global Memory BB Network
	Shared Memory BB Network

	Results
	Repository

	Discussion
	Conclusion
	References

